Changement climatique – Wikipédia

 Changement climatique – Wikipédia

Élévation actuelle de la température moyenne de la Terre et ses effets

La carte mondiale montre une élévation de la température de la mer de 0,5 à 1 degré Celsius; la température du sol augmente de 1 à 2 degrés Celsius; et la température de l'Arctique s'élève jusqu'à 4 degrés Celsius.

Températures moyennes de l’air à la surface de 2011 à 2020 par rapport à une moyenne de référence de 1951 à 1980 (Source: NASA)
Le graphique de 1880 à 2020 montre des facteurs naturels présentant des fluctuations aléatoires d'environ 0,3 degré Celsius, et des conducteurs humains augmentant régulièrement de 0,2 degré sur 100 ans jusqu'en 1980, puis augmentant fortement de 0,6 degré de plus au cours des 40 dernières années.

Température observée de la NASA par rapport à la moyenne de 1850–1900 comme base de référence préindustrielle. Le principal moteur de l’augmentation des températures mondiales à l’ère industrielle est l’activité humaine, les forces naturelles ajoutant de la variabilité.[1]

Changement climatique comprend les deux réchauffement climatique entraîné par les émissions anthropiques de gaz à effet de serre et les changements à grande échelle qui en résultent dans les conditions météorologiques. Bien qu’il y ait eu des périodes antérieures de changement climatique, depuis le milieu du XXe siècle, les humains ont eu un impact sans précédent sur le système climatique de la Terre et ont provoqué des changements à l’échelle mondiale.[2]

Le principal facteur de réchauffement est l’émission de gaz à effet de serre, dont plus de 90% sont du dioxyde de carbone (CO
2
) et le méthane.[3]La combustion de combustibles fossiles (charbon, pétrole et gaz naturel) pour la consommation d’énergie est la principale source de ces émissions, avec des contributions supplémentaires provenant de l’agriculture, de la déforestation et de la fabrication.[4] La cause humaine du changement climatique n’est contestée par aucun organe scientifique de renommée nationale ou internationale.[5] L’élévation de la température est accélérée ou tempérée par les rétroactions climatiques, telles que la perte de neige et de glace réfléchissant la lumière du soleil, l’augmentation de la vapeur d’eau (un gaz à effet de serre lui-même) et les modifications des puits de carbone terrestres et océaniques.

L’élévation de la température sur terre est environ deux fois supérieure à l’augmentation moyenne mondiale, ce qui entraîne une expansion du désert et des vagues de chaleur et des incendies de forêt plus courants.[6] L’élévation de la température est également amplifiée dans l’Arctique, où elle a contribué à la fonte du pergélisol, au retrait glaciaire et à la perte de glace de mer.[7] Les températures plus chaudes augmentent les taux d’évaporation, provoquant des tempêtes plus intenses et des conditions météorologiques extrêmes.[8]Les impacts sur les écosystèmes comprennent le déplacement ou l’extinction de nombreuses espèces à mesure que leur environnement change, le plus immédiatement dans les récifs coralliens, les montagnes et l’Arctique.[9] Le changement climatique menace les populations d’insécurité alimentaire, de pénurie d’eau, d’inondations, de maladies infectieuses, de chaleur extrême, de pertes économiques et de déplacements. Ces impacts ont conduit l’Organisation mondiale de la santé à qualifier le changement climatique de plus grande menace pour la santé mondiale au 21e siècle.[10] Même si les efforts visant à minimiser le réchauffement futur sont couronnés de succès, certains effets se poursuivront pendant des siècles, notamment l’élévation du niveau de la mer, la hausse des températures des océans et l’acidification des océans.[11]

L’énergie circule entre l’espace, l’atmosphère et la surface de la Terre. Les niveaux actuels de gaz à effet de serre provoquent un déséquilibre radiatif d’environ 0,9 W / m2.[12]

Bon nombre de ces impacts se font déjà sentir au niveau actuel de réchauffement, qui est d’environ 1,2 ° C (2,2 ° F).[13] Le Groupe d’experts intergouvernemental sur l’évolution du climat (GIEC) a publié une série de rapports qui prévoient des augmentations significatives de ces impacts alors que le réchauffement se poursuit à 1,5 ° C (2,7 ° F) et au-delà.[14] Un réchauffement supplémentaire augmente également le risque de déclencher des seuils critiques appelés points de basculement.[15] Répondre au changement climatique implique l’atténuation et l’adaptation.[16] L’atténuation – limiter le changement climatique – consiste à réduire les émissions de gaz à effet de serre et à les éliminer de l’atmosphère;[16] Les méthodes comprennent le développement et le déploiement de sources d’énergie à faible émission de carbone telles que l’énergie éolienne et solaire, l’élimination progressive du charbon, l’amélioration de l’efficacité énergétique, le reboisement et la préservation des forêts. L’adaptation consiste à s’adapter au climat réel ou attendu,[16] comme une meilleure protection du littoral, une meilleure gestion des catastrophes, une colonisation assistée et le développement de cultures plus résistantes. L’adaptation à elle seule ne peut éviter le risque d’impacts «graves, généralisés et irréversibles».[17]

Dans le cadre de l’Accord de Paris de 2015, les nations ont collectivement convenu de maintenir le réchauffement « bien en dessous de 2,0 ° C (3,6 ° F) » grâce à des efforts d’atténuation. Cependant, avec les promesses faites dans le cadre de l’Accord, le réchauffement climatique atteindrait encore environ 2,8 ° C (5,0 ° F) à la fin du siècle.[18] Limiter le réchauffement à 1,5 ° C (2,7 ° F) nécessiterait de réduire de moitié les émissions d’ici 2030 et d’atteindre des émissions proches de zéro d’ici 2050.[19]

Terminologie

Avant les années 1980, quand on ne savait pas si le réchauffement par les gaz à effet de serre dominerait le refroidissement induit par les aérosols, les scientifiques utilisaient souvent le terme modification climatique par inadvertance pour évoquer l’impact de l’humanité sur le climat. Dans les années 1980, les termes réchauffement climatique et changement climatique ont été vulgarisés, le premier se référant uniquement à un réchauffement accru de la surface, tandis que le second décrit le plein effet des gaz à effet de serre sur le climat.[20] Le réchauffement climatique est devenu le terme le plus populaire après que le climatologue de la NASA James Hansen l’ait utilisé dans son témoignage de 1988 au Sénat américain.[21] Dans les années 2000, le terme changement climatique a gagné en popularité.[22] Le réchauffement climatique fait généralement référence au réchauffement du système terrestre induit par l’homme, alors que le changement climatique peut faire référence à des changements naturels et anthropiques.[23] Les deux termes sont souvent utilisés de manière interchangeable.[24]

Divers scientifiques, politiciens et personnalités des médias ont adopté les termes crise climatique ou alors urgence climatique parler du changement climatique, tout en utilisant chauffage global au lieu du réchauffement climatique.[25] Le rédacteur en chef de la politique de Le gardien ont expliqué qu’ils avaient inclus ce langage dans leurs lignes directrices éditoriales « pour s’assurer que nous sommes scientifiquement précis, tout en communiquant clairement avec les lecteurs sur cette question très importante ».[26]Oxford Dictionary a choisi urgence climatique comme son mot de l’année en 2019 et définit le terme comme «une situation dans laquelle une action urgente est nécessaire pour réduire ou arrêter le changement climatique et éviter des dommages environnementaux potentiellement irréversibles qui en résultent».[27]

Élévation de température observée

Reconstruction de la température de surface mondiale au cours des 2000 dernières années à l’aide de données indirectes provenant d’anneaux d’arbres, de coraux et de carottes de glace en bleu.[28] Les données d’observation directe sont en rouge.[29]

Données de la NASA[29] montre que les températures de surface des terres ont augmenté plus rapidement que les températures des océans.

Plusieurs ensembles de données instrumentales produits indépendamment montrent que le système climatique se réchauffe,[30] la décennie 2009–2018 étant de 0,93 ± 0,07 ° C (1,67 ± 0,13 ° F) plus chaude que la période de référence préindustrielle (1850–1900).[31] Actuellement, les températures de surface augmentent d’environ 0,2 ° C (0,36 ° F) par décennie,[32] avec 2020 atteignant une température de 1,2 ° C (2,2 ° F) au-dessus du pré-industriel.[13] Depuis 1950, le nombre de jours et de nuits froids a diminué et le nombre de jours et de nuits chauds a augmenté.[33]

Il y a eu peu de réchauffement net entre le 18e siècle et le milieu du 19e siècle. Les proxys climatiques, sources d’informations climatiques issues des archives naturelles telles que les arbres et les carottes de glace, montrent que les variations naturelles compensent les premiers effets de la révolution industrielle.[34] Les enregistrements de thermomètres ont commencé à fournir une couverture mondiale vers 1850.[35] Les modèles historiques de réchauffement et de refroidissement, comme l’anomalie climatique médiévale et le petit âge glaciaire, ne se sont pas produits en même temps dans différentes régions, mais les températures peuvent avoir atteint des niveaux aussi élevés que ceux de la fin du XXe siècle dans un ensemble limité de régions. .[36] Il y a eu des épisodes préhistoriques de réchauffement planétaire, comme le maximum thermique paléocène – éocène.[37] Cependant, l’élévation de température observée moderne et CO
2
les concentrations ont été si rapides que même les événements géophysiques brusques qui ont eu lieu dans l’histoire de la Terre ne se rapprochent pas des taux actuels.[38]

Les preuves de réchauffement à partir des mesures de la température de l’air sont renforcées par un large éventail d’autres observations.[39] Il y a eu une augmentation de la fréquence et de l’intensité des fortes précipitations, la fonte de la neige et de la glace terrestre et une augmentation de l’humidité atmosphérique.[40] La flore et la faune se comportent également d’une manière compatible avec le réchauffement; par exemple, les plantes fleurissent plus tôt au printemps.[41] Un autre indicateur clé est le refroidissement de la haute atmosphère, qui démontre que les gaz à effet de serre emprisonnent la chaleur près de la surface de la Terre et l’empêchent de rayonner dans l’espace.[42]

Bien que les lieux de réchauffement varient, les modèles sont indépendants de l’endroit où les gaz à effet de serre sont émis, car les gaz persistent assez longtemps pour se diffuser sur la planète. Depuis la période préindustrielle, les températures moyennes mondiales des terres ont augmenté presque deux fois plus vite que les températures moyennes de surface mondiales.[43] Ceci est dû à la plus grande capacité calorifique des océans et au fait que les océans perdent plus de chaleur par évaporation.[44] Plus de 90% de l’énergie supplémentaire du système climatique au cours des 50 dernières années a été stockée dans l’océan, le reste réchauffant l’atmosphère, faisant fondre la glace et réchauffant les continents.[45][46]

L’hémisphère nord et le pôle nord se sont réchauffés beaucoup plus rapidement que le pôle sud et l’hémisphère sud. L’hémisphère nord a non seulement beaucoup plus de terres, mais aussi plus de neige saisonnière et de glace de mer, en raison de la façon dont les masses terrestres sont disposées autour de l’océan Arctique. Lorsque ces surfaces passent de la réflexion de beaucoup de lumière à l’obscurité après la fonte de la glace, elles commencent à absorber plus de chaleur.[47] Les dépôts localisés de carbone noir sur la neige et la glace contribuent également au réchauffement de l’Arctique.[48] Les températures de l’Arctique ont augmenté et devraient continuer d’augmenter au cours de ce siècle à plus de deux fois la vitesse du reste du monde.[49] La fonte des glaciers et des calottes glaciaires dans l’Arctique perturbe la circulation océanique, y compris un Gulf Stream affaibli, modifiant davantage le climat.[50]

Facteurs de l’augmentation récente de la température

Le système climatique connaît à lui seul divers cycles qui peuvent durer des années (comme El Niño – Oscillation australe), des décennies, voire des siècles.[51] D’autres changements sont causés par un déséquilibre énergétique qui est «externe» au système climatique, mais pas toujours externe à la Terre.[52] Des exemples de forçages externes comprennent les changements dans la composition de l’atmosphère (par exemple, l’augmentation des concentrations de gaz à effet de serre), la luminosité solaire, les éruptions volcaniques et les variations de l’orbite de la Terre autour du Soleil.[53]

Pour déterminer la contribution humaine au changement climatique, la variabilité climatique interne connue et les forçages externes naturels doivent être exclus. Une approche clé consiste à déterminer des «empreintes digitales» uniques pour toutes les causes potentielles, puis à comparer ces empreintes avec les modèles observés de changement climatique.[54] Par exemple, le forçage solaire peut être exclu comme une cause majeure parce que son empreinte digitale se réchauffe dans toute l’atmosphère et que seule la basse atmosphère s’est réchauffée, comme prévu par les gaz à effet de serre (qui emprisonnent l’énergie thermique rayonnant de la surface).[55] L’attribution du changement climatique récent montre que le principal moteur est l’augmentation des gaz à effet de serre, mais que les aérosols ont également un effet important.[56]

Gaz à effet de serre

CO
2
concentrations au cours des 800000 dernières années, mesurées à partir des carottes de glace (bleu / vert) et directement (noir)

La Terre absorbe la lumière du soleil, puis la rayonne sous forme de chaleur. Les gaz à effet de serre dans l’atmosphère absorbent et réémettent le rayonnement infrarouge, ce qui ralentit la vitesse à laquelle il peut traverser l’atmosphère et s’échapper dans l’espace.[57] Avant la révolution industrielle, les quantités naturelles de gaz à effet de serre faisaient que l’air près de la surface était environ 33 ° C (59 ° F) plus chaud qu’il ne l’aurait été en leur absence.[58][59] Si la vapeur d’eau (~ 50%) et les nuages ​​(~ 25%) sont les principaux contributeurs à l’effet de serre, ils augmentent en fonction de la température et sont donc considérés comme des rétroactions. D’autre part, les concentrations de gaz tels que CO
2
(~ 20%), ozone troposphérique,[60]Les CFC et l’oxyde nitreux ne dépendent pas de la température et sont donc considérés comme des forçages externes.[61]

L’activité humaine depuis la révolution industrielle, principalement l’extraction et la combustion de combustibles fossiles (charbon, pétrole et gaz naturel),[62] a augmenté la quantité de gaz à effet de serre dans l’atmosphère, entraînant un déséquilibre radiatif. En 2018, les concentrations de CO
2
et le méthane avait augmenté d’environ 45% et 160%, respectivement, depuis 1750.[63] Celles-ci CO
2
les niveaux sont beaucoup plus élevés qu’ils ne l’ont été à tout moment au cours des 800 000 dernières années, période pour laquelle des données fiables ont été recueillies à partir de l’air emprisonné dans les carottes de glace.[64] Des preuves géologiques moins directes indiquent que CO
2
les valeurs n’ont pas été aussi élevées depuis des millions d’années.[65]

Le Global Carbon Project montre comment les ajouts à CO
2
depuis 1880 ont été causés par différentes sources qui s’accélèrent les unes après les autres.

Les émissions anthropiques mondiales de gaz à effet de serre en 2018, à l’exclusion de celles du changement d’affectation des terres, équivalaient à 52 milliards de tonnes de CO
2
. De ces émissions, 72% étaient réelles CO
2
, 19% étaient du méthane, 6% du protoxyde d’azote et 3% étaient des gaz fluorés.CO
2
les émissions proviennent principalement de la combustion de combustibles fossiles pour fournir de l’énergie aux transports, à la fabrication, au chauffage et à l’électricité.[67] Supplémentaire CO
2
les émissions proviennent de la déforestation et des processus industriels, qui comprennent CO
2
libérés par les réactions chimiques pour la fabrication du ciment, de l’acier, de l’aluminium et des engrais.[68] Les émissions de méthane proviennent du bétail, du fumier, de la riziculture, des décharges, des eaux usées, des mines de charbon, ainsi que de l’extraction de pétrole et de gaz.[69] Les émissions de protoxyde d’azote proviennent en grande partie de la décomposition microbienne des engrais inorganiques et organiques.[70] Du point de vue de la production, les principales sources d’émissions mondiales de gaz à effet de serre sont estimées comme suit: électricité et chaleur (25%), agriculture et sylviculture (24%), industrie et fabrication (21%), transports (14%) et bâtiments ( 6%).[71]

Malgré la contribution de la déforestation aux émissions de gaz à effet de serre, la surface terrestre de la Terre, en particulier ses forêts, reste un important puits de carbone pour CO
2
. Les processus naturels, tels que la fixation du carbone dans le sol et la photosynthèse, ont plus que compensé les contributions en gaz à effet de serre de la déforestation. On estime que le puits terrestre élimine environ 29% des CO
2
émissions.[72] L’océan sert également de puits de carbone important via un processus en deux étapes. D’abord, CO
2
se dissout dans l’eau de surface. Ensuite, la circulation inversée de l’océan le distribue profondément dans l’intérieur de l’océan, où il s’accumule au fil du temps dans le cadre du cycle du carbone. Au cours des deux dernières décennies, les océans du monde ont absorbé 20 à 30% des émissions CO
2
.[73]

Aérosols et nuages

La pollution atmosphérique, sous forme d’aérosols, non seulement fait peser un lourd fardeau sur la santé humaine, mais affecte également le climat à grande échelle.[74] De 1961 à 1990, une réduction progressive de la quantité de lumière solaire atteignant la surface de la Terre a été observée, un phénomène populairement connu sous le nom de gradation globale,[75] généralement attribués aux aérosols provenant de la combustion de biocarburants et de combustibles fossiles.[76]L’élimination des aérosols par précipitation donne aux aérosols troposphériques une durée de vie atmosphérique d’environ une semaine seulement, tandis que les aérosols stratosphériques peuvent rester dans l’atmosphère pendant quelques années.[77] À l’échelle mondiale, les aérosols sont en baisse depuis 1990, ce qui signifie qu’ils ne masquent plus autant le réchauffement des gaz à effet de serre.[78]

Outre leurs effets directs (diffusion et absorption du rayonnement solaire), les aérosols ont des effets indirects sur le bilan radiatif de la Terre. Les aérosols sulfatés agissent comme des noyaux de condensation des nuages ​​et conduisent ainsi à des nuages ​​qui ont des gouttelettes de plus en plus petites. Ces nuages ​​reflètent le rayonnement solaire plus efficacement que les nuages ​​avec des gouttelettes moins nombreuses et plus grosses.[79] Cet effet rend également les gouttelettes de taille plus uniforme, ce qui réduit la croissance des gouttes de pluie et rend les nuages ​​plus réfléchissants à la lumière du soleil entrante.[80] Les effets indirects des aérosols sont la plus grande incertitude du forçage radiatif.[81]

Alors que les aérosols limitent généralement le réchauffement climatique en réfléchissant la lumière du soleil, le noir de carbone dans la suie qui tombe sur la neige ou la glace peut contribuer au réchauffement climatique. Non seulement cela augmente l’absorption de la lumière du soleil, mais cela augmente également la fonte et l’élévation du niveau de la mer.[82] Limiter les nouveaux gisements de carbone noir dans l’Arctique pourrait réduire le réchauffement climatique de 0,2 ° C (0,36 ° F) d’ici 2050.[83]

Changements de la surface du terrain

Le taux de perte mondiale du couvert arboré a presque doublé depuis 2001, pour atteindre une perte annuelle approchant une zone de la taille de l’Italie.[84]

Les humains modifient la surface de la Terre principalement pour créer plus de terres agricoles. Aujourd’hui, l’agriculture occupe 34% du territoire terrestre, 26% sont des forêts et 30% sont inhabitables (glaciers, déserts, etc.).[85] La superficie des terres boisées continue de diminuer, en grande partie en raison de la conversion en terres cultivées sous les tropiques.[86] Cette déforestation est l’aspect le plus significatif du changement de surface des terres affectant le réchauffement climatique. Les principales causes de la déforestation sont: le changement permanent d’utilisation des terres de la forêt à la terre agricole produisant des produits tels que le bœuf et l’huile de palme (27%), l’exploitation forestière pour produire des produits forestiers / forestiers (26%), la culture itinérante à court terme (24%) et les incendies de forêt (23%).[87]

En plus d’affecter les concentrations de gaz à effet de serre, les changements d’affectation des terres affectent le réchauffement climatique par le biais de divers autres mécanismes chimiques et physiques. La modification du type de végétation dans une région affecte la température locale, en modifiant la quantité de lumière solaire renvoyée dans l’espace (albédo) et la quantité de chaleur perdue par évaporation. Par exemple, le passage d’une forêt sombre à une prairie rend la surface plus claire, la faisant refléter davantage la lumière du soleil. La déforestation peut également contribuer à changer les températures en affectant la libération d’aérosols et d’autres composés chimiques qui influencent les nuages, et en modifiant la configuration des vents.[88] Dans les zones tropicales et tempérées, l’effet net est de produire un réchauffement significatif, tandis qu’à des latitudes plus proches des pôles un gain d’albédo (car la forêt est remplacée par la couverture neigeuse) conduit à un effet de refroidissement global.[88] À l’échelle mondiale, on estime que ces effets ont conduit à un léger refroidissement, dominé par une augmentation de l’albédo de surface.[89]

Activité solaire et volcanique

Les modèles climatiques physiques sont incapables de reproduire le réchauffement rapide observé ces dernières décennies en ne prenant en compte que les variations du rendement solaire et de l’activité volcanique.[90] Comme le Soleil est la principale source d’énergie de la Terre, les changements de la lumière solaire entrante affectent directement le système climatique.[91]L’irradiance solaire a été mesurée directement par satellites,[92] et les mesures indirectes sont disponibles à partir du début des années 1600.[91] Il n’y a pas eu de tendance à la hausse de la quantité d’énergie solaire atteignant la Terre.[93] D’autres preuves que les gaz à effet de serre sont la cause du changement climatique récent proviennent de mesures montrant le réchauffement de la basse atmosphère (la troposphère), couplé au refroidissement de la haute atmosphère (la stratosphère).[94] Si les variations solaires étaient responsables du réchauffement observé, on s’attendrait à un réchauffement à la fois de la troposphère et de la stratosphère, mais cela n’a pas été le cas.[55]

Les éruptions volcaniques explosives représentent le plus grand forçage naturel de l’ère industrielle. Lorsque l’éruption est suffisamment forte (avec du dioxyde de soufre atteignant la stratosphère), la lumière du soleil peut être partiellement bloquée pendant quelques années, avec un signal de température qui dure environ deux fois plus longtemps. À l’ère industrielle, l’activité volcanique a eu des impacts négligeables sur les tendances de la température mondiale.[95] CO volcanique actuel2 les émissions équivalent à moins de 1% du CO anthropique actuel2 émissions.

Commentaires sur le changement climatique

La glace de mer réfléchit de 50% à 70% du rayonnement solaire entrant tandis que la surface sombre de l’océan n’en reflète que 6%, de sorte que la fonte de la glace de mer est une rétroaction auto-renforçante.[97]

La réponse du système climatique à un forçage initial est modifiée par des rétroactions: augmentée par des rétroactions auto-renforçantes et réduite par des rétroactions équilibrées.[98] Les principales rétroactions renforçantes sont la rétroaction vapeur d’eau, la rétroaction glace-albédo et probablement l’effet net des nuages. La principale rétroaction d’équilibrage du changement de température globale est le refroidissement radiatif dans l’espace sous forme de rayonnement infrarouge en réponse à l’augmentation de la température de surface. En plus des rétroactions de température, il y a des rétroactions dans le cycle du carbone, comme l’effet fertilisant de CO
2
sur la croissance des plantes.[101] L’incertitude sur les rétroactions est la principale raison pour laquelle différents modèles climatiques projettent différentes amplitudes de réchauffement pour une quantité donnée d’émissions.[102]

À mesure que l’air se réchauffe, il peut retenir plus d’humidité. Après le réchauffement initial dû aux émissions de gaz à effet de serre, l’atmosphère contiendra plus d’eau. La vapeur d’eau étant un puissant gaz à effet de serre, cela réchauffe davantage l’atmosphère. Si la couverture nuageuse augmente, plus de lumière solaire sera réfléchie dans l’espace, refroidissant la planète. Si les nuages ​​deviennent plus hauts et plus minces, ils agissent comme un isolant, réfléchissant la chaleur du bas vers le bas et réchauffant la planète. Dans l’ensemble, la rétroaction nette des nuages ​​au cours de l’ère industrielle a probablement exacerbé la hausse de température.[104] La réduction de la couverture neigeuse et de la glace de mer dans l’Arctique réduit l’albédo de la surface de la Terre.[105] Une plus grande partie de l’énergie solaire est maintenant absorbée dans ces régions, contribuant à l’amplification des changements de température dans l’Arctique.[106] L’amplification de l’Arctique fait également fondre le pergélisol, qui libère du méthane et CO
2
dans l’atmosphère.[107]

Environ la moitié des CO
2
les émissions ont été absorbées par les plantes terrestres et par les océans.[108] Sur terre, surélevé CO
2
et une saison de croissance prolongée ont stimulé la croissance des plantes. Le changement climatique augmente les sécheresses et les vagues de chaleur qui inhibent la croissance des plantes, ce qui rend incertain si ce puits de carbone continuera de croître à l’avenir.[109] Les sols contiennent de grandes quantités de carbone et peuvent en libérer lorsqu’ils se réchauffent.[110] Comme plus CO
2
et la chaleur est absorbée par l’océan, elle s’acidifie, sa circulation change et le phytoplancton absorbe moins de carbone, ce qui diminue la vitesse à laquelle l’océan absorbe le carbone atmosphérique. Le changement climatique peut augmenter les émissions de méthane des zones humides, des systèmes marins et d’eau douce et du pergélisol.

Réchauffement futur et budget carbone

Projections moyennes du modèle climatique pour 2081–2100 par rapport à 1986–2005, selon des scénarios d’émissions faibles et élevées

Le réchauffement futur dépend des forces des rétroactions climatiques et des émissions de gaz à effet de serre.[113] Les premiers sont souvent estimés à l’aide de divers modèles climatiques, développés par plusieurs institutions scientifiques.[114] Un modèle climatique est une représentation des processus physiques, chimiques et biologiques qui affectent le système climatique.[115] Les modèles incluent des changements dans l’orbite terrestre, des changements historiques dans l’activité du Soleil et le forçage volcanique.[116] Les modèles informatiques tentent de reproduire et de prédire la circulation des océans, le cycle annuel des saisons et les flux de carbone entre la surface terrestre et l’atmosphère.[117] Les modèles projettent différentes hausses de température futures pour des émissions données de gaz à effet de serre; ils ne sont pas non plus entièrement d’accord sur la force des différentes rétroactions sur la sensibilité climatique et l’ampleur de l’inertie du système climatique.[118]

Le réalisme physique des modèles est testé en examinant leur capacité à simuler des climats contemporains ou passés.[119] Les modèles antérieurs ont sous-estimé le taux de rétrécissement de l’Arctique[120] et sous-estimé le taux d’augmentation des précipitations.[121] L’élévation du niveau de la mer depuis 1990 était sous-estimée dans les modèles plus anciens, mais les modèles plus récents concordent bien avec les observations.[122] L’Évaluation nationale du climat publiée en 2017 aux États-Unis note que «les modèles climatiques peuvent encore sous-estimer ou manquer des processus de rétroaction pertinents».[123]

Diverses voies de concentration représentatives (RCP) peuvent être utilisées comme intrants pour les modèles climatiques: «un scénario d’atténuation rigoureux (RCP2.6), deux scénarios intermédiaires (RCP4.5 et RCP6.0) et un scénario avec des [greenhouse gas] émissions (RCP8.5) « .[124] Les PCR examinent uniquement les concentrations de gaz à effet de serre et n’incluent donc pas la réponse du cycle du carbone.[125] Les projections du modèle climatique résumées dans le cinquième rapport d’évaluation du GIEC indiquent qu’au cours du 21e siècle, la température de surface mondiale augmentera probablement de 0,3 à 1,7 ° C (0,5 à 3,1 ° F) dans un scénario modéré, soit jusqu’à 2,6 à 4,8 ° C (4,7 à 8,6 ° F) dans un scénario extrême, en fonction du taux des futures émissions de gaz à effet de serre et des effets de rétroaction sur le climat.[126]

Quatre voies de concentration futures possibles, y compris CO
2
et autres gaz » CO
2
-équivalents

Un sous-ensemble de modèles climatiques ajoute des facteurs sociétaux à un modèle climatique physique simple. Ces modèles simulent comment la population, la croissance économique et la consommation d’énergie affectent – et interagissent avec – le climat physique. Avec ces informations, ces modèles peuvent produire des scénarios sur la façon dont les émissions de gaz à effet de serre peuvent varier à l’avenir. Cette sortie est ensuite utilisée comme entrée pour les modèles climatiques physiques pour générer des projections de changement climatique.[127] Dans certains scénarios, les émissions continuent d’augmenter au cours du siècle, tandis que d’autres ont réduit les émissions.[128] Les ressources en combustibles fossiles sont trop abondantes pour que l’on puisse compter sur les pénuries pour limiter les émissions de carbone au 21e siècle.[129] Les scénarios d’émissions peuvent être combinés à la modélisation du cycle du carbone pour prédire comment les concentrations atmosphériques de gaz à effet de serre pourraient changer à l’avenir.[130] Selon ces modèles combinés, d’ici 2100, la concentration atmosphérique de CO2 pourrait être aussi bas que 380 ou aussi haut que 1400 ppm, selon le scénario socio-économique et le scénario d’atténuation.[131]

Le budget d’émissions de carbone restant est déterminé en modélisant le cycle du carbone et la sensibilité du climat aux gaz à effet de serre.[132] Selon le GIEC, le réchauffement climatique peut être maintenu en dessous de 1,5 ° C (2,7 ° F) avec deux tiers de chance si les émissions après 2018 ne dépassent pas 420 ou 570 gigatonnes de CO
2
, en fonction de la définition exacte de la température globale. Ce montant correspond à 10 à 13 ans d’émissions actuelles. Il y a de fortes incertitudes sur le budget; par exemple, il peut s’agir de 100 gigatonnes de CO
2
plus faible en raison des rejets de méthane provenant du pergélisol et des terres humides.[133]

Les impacts

Environnement physique

Reconstruction historique du niveau de la mer et projections jusqu’à 2100 publiées en 2017 par le U.S. Global Change Research Program[134]

Les effets environnementaux du changement climatique sont vastes et de grande portée, affectant les océans, la glace et les conditions météorologiques. Des changements peuvent survenir progressivement ou rapidement. Les preuves de ces effets proviennent de l’étude du changement climatique dans le passé, de la modélisation et des observations modernes.[135] Depuis les années 1950, des sécheresses et des vagues de chaleur sont apparues simultanément avec une fréquence croissante.[136] Les événements extrêmement humides ou secs pendant la période de la mousson ont augmenté en Inde et en Asie de l’Est.[137] Les précipitations maximales et la vitesse du vent des ouragans et des typhons sont probablement en augmentation.[8]

Le niveau mondial de la mer augmente en raison de la fonte des glaciers, de la fonte des calottes glaciaires au Groenland et en Antarctique et de l’expansion thermique. Entre 1993 et ​​2017, la hausse a augmenté avec le temps, atteignant en moyenne 3,1 ± 0,3 mm par an.[138] Au cours du 21e siècle, le GIEC prévoit que dans un scénario d’émissions très élevées, le niveau de la mer pourrait augmenter de 61 à 110 cm.[139] L’augmentation de la chaleur de l’océan mine et menace de débrancher les sorties des glaciers antarctiques, risquant de faire fondre la calotte glaciaire[140] et la possibilité d’une élévation du niveau de la mer de 2 mètres d’ici 2100 avec des émissions élevées.

Le changement climatique a conduit à des décennies de rétrécissement et d’amincissement de la glace de mer arctique, la rendant vulnérable aux anomalies atmosphériques.[142] Alors que les étés sans glace devraient être rares à 1,5 ° C (2,7 ° F) de réchauffement, ils devraient se produire une fois tous les trois à dix ans à un niveau de réchauffement de 2,0 ° C (3,6 ° F).[143] Atmosphère supérieure CO
2
les concentrations ont conduit à des changements dans la chimie des océans. Une augmentation de dissous CO
2
provoque l’acidification des océans.[144] De plus, les niveaux d’oxygène diminuent car l’oxygène est moins soluble dans l’eau plus chaude,[145] avec des zones mortes hypoxiques en expansion à la suite de proliférations d’algues stimulées par des températures plus élevées, CO
2
niveaux, désoxygénation des océans et eutrophisation.[146]

Points de basculement et impacts à long terme

Plus le réchauffement climatique est important, plus le risque de passer par des «points de basculement», des seuils au-delà desquels certains impacts ne peuvent plus être évités même si les températures baissent.[147] Un exemple est l’effondrement des calottes glaciaires de l’Antarctique occidental et du Groenland, où une élévation de température de 1,5 à 2,0 ° C (2,7 à 3,6 ° F) peut entraîner la fonte des calottes glaciaires, bien que l’échelle de temps de la fonte soit incertaine et dépend de l’avenir. échauffement.[148][14] Certains changements à grande échelle pourraient survenir sur une courte période, comme un effondrement de la circulation méridienne de renversement de l’Atlantique,[149] ce qui déclencherait des changements climatiques majeurs dans l’Atlantique Nord, en Europe et en Amérique du Nord.[150]

Les effets à long terme du changement climatique comprennent la poursuite de la fonte des glaces, le réchauffement des océans, l’élévation du niveau de la mer et l’acidification des océans. Sur une échelle de temps allant de siècles à millénaires, l’ampleur du changement climatique sera principalement déterminée par CO
2
émissions.[151] Cela est dû à CO
2
longue durée de vie atmosphérique.[151] Océanique CO
2
l’absorption est suffisamment lente pour que l’acidification des océans se poursuive pendant des centaines à des milliers d’années. On estime que ces émissions ont prolongé la période interglaciaire actuelle d’au moins 100 000 ans.[153] L’élévation du niveau de la mer se poursuivra pendant de nombreux siècles, avec une élévation estimée de 2,3 mètres par degré Celsius (4,2 pieds / ° F) après 2000 ans.[154]

Nature et faune

Le réchauffement récent a poussé de nombreuses espèces terrestres et d’eau douce vers les pôles et vers des altitudes plus élevées.[155] Atmosphère supérieure CO
2
les niveaux et une saison de croissance prolongée ont entraîné un verdissement mondial, tandis que les vagues de chaleur et la sécheresse ont réduit la productivité des écosystèmes dans certaines régions. L’équilibre futur de ces effets opposés n’est pas clair. Le changement climatique a contribué à l’expansion des zones climatiques plus sèches, comme l’expansion des déserts dans les régions subtropicales.[157] L’ampleur et la vitesse du réchauffement climatique rendent plus probables des changements brusques dans les écosystèmes. Dans l’ensemble, on s’attend à ce que le changement climatique entraîne l’extinction de nombreuses espèces.

Les océans se sont réchauffés plus lentement que la terre, mais les plantes et les animaux de l’océan ont migré vers les pôles plus froids plus rapidement que les espèces terrestres.[160] Tout comme sur terre, les vagues de chaleur dans l’océan se produisent plus fréquemment en raison du changement climatique, avec des effets nocifs sur un large éventail d’organismes tels que les coraux, les varech et les oiseaux de mer.[161] L’acidification des océans a un impact sur les organismes qui produisent des coquillages et des squelettes, comme les moules et les balanes, et les récifs coralliens; les récifs coralliens ont subi un blanchissement important après les vagues de chaleur. La prolifération d’algues nuisibles, renforcée par le changement climatique et l’eutrophisation, entraîne une anoxie, une perturbation des réseaux trophiques et une mortalité massive à grande échelle de la vie marine.[163] Les écosystèmes côtiers sont soumis à un stress particulier, près de la moitié des zones humides ayant disparu en raison du changement climatique et d’autres impacts humains.

Humains

Les effets du changement climatique sur les humains, principalement dus au réchauffement et aux variations des précipitations, ont été détectés dans le monde entier. Les impacts régionaux du changement climatique sont désormais observables sur tous les continents et dans toutes les régions océaniques,[169] les zones les moins développées à basse latitude sont les plus exposées.[170] L’émission continue de gaz à effet de serre entraînera un réchauffement supplémentaire et des changements durables dans le système climatique, avec des «impacts potentiellement graves, généralisés et irréversibles» pour les personnes et les écosystèmes.[171] Climate change risks are unevenly distributed, but are generally greater for disadvantaged people in developing and developed countries.[172]

Food and health

Health impacts include both the direct effects of extreme weather, leading to injury and loss of life,[173] as well as indirect effects, such as undernutrition brought on by crop failures.[174] Various infectious diseases are more easily transmitted in a warmer climate, such as dengue fever, which affects children most severely, and malaria. Young children are the most vulnerable to food shortages, and together with older people, to extreme heat. The World Health Organization (WHO) has estimated that between 2030 and 2050, climate change is expected to cause approximately 250,000 additional deaths per year from heat exposure in elderly people, increases in diarrheal disease, malaria, dengue, coastal flooding, and childhood undernutrition.[177] Over 500,000 additional adult deaths are projected yearly by 2050 due to reductions in food availability and quality.[178] Other major health risks associated with climate change include air and water quality.[179] The WHO has classified human impacts from climate change as the greatest threat to global health in the 21st century.[180]

Climate change is affecting food security and has caused reduction in global mean yields of maize, wheat, and soybeans between 1981 and 2010.[181] Future warming could further reduce global yields of major crops.[182]Crop production will probably be negatively affected in low-latitude countries, while effects at northern latitudes may be positive or negative.[183] Up to an additional 183 million people worldwide, particularly those with lower incomes, are at risk of hunger as a consequence of these impacts.[184] The effects of warming on the oceans impact fish stocks, with a global decline in the maximum catch potential. Only polar stocks are showing an increased potential. Regions dependent on glacier water, regions that are already dry, and small islands are at increased risk of water stress due to climate change.[186]

Livelihoods

Economic damages due to climate change have been underestimated, and may be severe, with the probability of disastrous tail-risk events being nontrivial.[187] Climate change has likely already increased global economic inequality, and is projected to continue doing so.[188] Most of the severe impacts are expected in sub-Saharan Africa and South-East Asia, where existing poverty is already exacerbated.[189] The World Bank estimates that climate change could drive over 120 million people into poverty by 2030. Current inequalities between men and women, between rich and poor, and between different ethnicities have been observed to worsen as a consequence of climate variability and climate change.[191] An expert elicitation concluded that the role of climate change in armed conflict has been small compared to factors such as socio-economic inequality and state capabilities, but that future warming will bring increasing risks.

Low-lying islands and coastal communities are threatened through hazards posed by sea level rise, such as flooding and permanent submergence. This could lead to statelessness for populations in island nations, such as the Maldives and Tuvalu.[194] In some regions, rise in temperature and humidity may be too severe for humans to adapt to. With worst-case climate change, models project that almost one-third of humanity might live in extremely hot and uninhabitable climates, similar to the current climate found mainly in the Sahara.[196] These factors, plus weather extremes, can drive environmental migration, both within and between countries.[197] Displacement of people is expected to increase as a consequence of more frequent extreme weather, sea level rise, and conflict arising from increased competition over natural resources. Climate change may also increase vulnerabilities, leading to « trapped populations » in some areas who are not able to move due to a lack of resources.[198]

Responses: mitigation and adaptation

Mitigation

Scenarios of global greenhouse gas emissions. If all countries achieve their current Paris Agreement pledges, average warming by 2100 would still significantly exceed the maximum 2°C target set by the Agreement.

Climate change impacts can be mitigated by reducing greenhouse gas emissions and by enhancing sinks that absorb greenhouse gases from the atmosphere.[204] In order to limit global warming to less than 1.5 °C with a high likelihood of success, global greenhouse gas emissions needs to be net-zero by 2050, or by 2070 with a 2 °C target.[205] This requires far-reaching, systemic changes on an unprecedented scale in energy, land, cities, transport, buildings, and industry.[206] Scenarios that limit global warming to 1.5 °C often describe reaching net negative emissions at some point.[207] To make progress towards a goal of limiting warming to 2 °C, the United Nations Environment Programme estimates that, within the next decade, countries need to triple the amount of reductions they have committed to in their current Paris Agreements; an even greater level of reduction is required to meet the 1.5 °C goal.[208]

Although there is no single pathway to limit global warming to 1.5 or 2.0 °C (2.7 or 3.6 °F),[209] most scenarios and strategies see a major increase in the use of renewable energy in combination with increased energy efficiency measures to generate the needed greenhouse gas reductions.[210] To reduce pressures on ecosystems and enhance their carbon sequestration capabilities, changes would also be necessary in sectors such as forestry and agriculture.[211]

Other approaches to mitigating climate change entail a higher level of risk. Scenarios that limit global warming to 1.5 °C typically project the large-scale use of carbon dioxide removal methods over the 21st century.[212] There are concerns, though, about over-reliance on these technologies, as well as possible environmental impacts.[213]Solar radiation management (SRM) methods have also been explored as a possible supplement to deep reductions in emissions. However, SRM would raise significant ethical and legal issues, and the risks are poorly understood.[214]

Clean energy

Coal, oil, and natural gas remain the primary global energy sources even as renewables have begun rapidly increasing.[215]

Economic sectors with more greenhouse gas contributions have a greater stake in climate change policies.

Long-term decarbonisation scenarios point to rapid and significant investment in renewable energy,[216] which includes solar and wind power, bioenergy, geothermal energy, and hydropower.[217] Fossil fuels accounted for 80% of the world’s energy in 2018, while the remaining share was split between nuclear power and renewables;[218] that mix is projected to change significantly over the next 30 years.[210] Solar and wind have seen substantial growth and progress over the last few years; photovoltaic solar and onshore wind are the cheapest forms of
adding new power generation capacity in most countries.[219] Renewables represented 75% of all new electricity generation installed in 2019, with solar and wind constituting nearly all of that amount.[220] Meanwhile, nuclear power costs are increasing amidst stagnant power share, so that nuclear power generation is now several times more expensive per megawatt-hour than wind and solar.[221]

To achieve carbon neutrality by 2050, renewable energy would become the dominant form of electricity generation, rising to 85% or more by 2050 in some scenarios. The use of electricity for other needs, such as heating, would rise to the point where electricity becomes the largest form of overall energy supply.[222] Investment in coal would be eliminated and coal use nearly phased out by 2050.[223]

There are obstacles to the continued rapid development of renewables. For solar and wind power, a key challenge is their intermittency and seasonal variability. Traditionally, hydro dams with reservoirs and conventional power plants have been used when variable energy production is low. Intermittency can further be countered by demand flexibility, and by expanding battery storage and long-distance transmission to smooth variability of renewable output across wider geographic areas.[216] Some environmental and land use concerns have been associated with large solar and wind projects,[224] while bioenergy is often not carbon neutral and may have negative consequences for food security.[225] Hydropower growth has been slowing and is set to decline further due to concerns about social and environmental impacts.[226]

Clean energy improves human health by minimizing climate change and has the near-term benefit of reducing air pollution deaths,[227] which were estimated at 7 million annually in 2016.[228] Meeting the Paris Agreement goals that limit warming to a 2 °C increase could save about a million of those lives per year by 2050, whereas limiting global warming to 1.5 °C could save millions and simultaneously increase energy security and reduce poverty.[229]

Energy efficiency

Reducing energy demand is another major feature of decarbonisation scenarios and plans.[230] In addition to directly reducing emissions, energy demand reduction measures provide more flexibility for low carbon energy development, aid in the management of the electricity grid, and minimise carbon-intensive infrastructure development.[231] Over the next few decades, major increases in energy efficiency investment will be required to achieve these reductions, comparable to the expected level of investment in renewable energy.[232] However, several COVID-19 related changes in energy use patterns, energy efficiency investments, and funding have made forecasts for this decade more difficult and uncertain.[233]

Efficiency strategies to reduce energy demand vary by sector. In transport, gains can be made by switching passengers and freight to more efficient travel modes, such as buses and trains, and increasing the use of electric vehicles.[234] Industrial strategies to reduce energy demand include increasing the energy efficiency of heating systems and motors, designing less energy-intensive products, and increasing product lifetimes.[235] In the building sector the focus is on better design of new buildings, and incorporating higher levels of energy efficiency in retrofitting techniques for existing structures.[236] Buildings would see additional electrification with the use of technologies like heat pumps, which have higher efficiency than fossil fuels.[237]

Agriculture, industry and transport

Agriculture and forestry face a triple challenge of limiting greenhouse gas emissions, preventing the further conversion of forests to agricultural land, and meeting increases in world food demand.[238] A suite of actions could reduce agriculture/forestry-based greenhouse gas emissions by 66% from 2010 levels by reducing growth in demand for food and other agricultural products, increasing land productivity, protecting and restoring forests, and reducing greenhouse gas emissions from agricultural production.[239]

In addition to the industrial demand reduction measures mentioned earlier, steel and cement production, which together are responsible for about 13% of industrial CO
2
emissions, present particular challenges. In these industries, carbon-intensive materials such as coke and lime play an integral role in the production process. Reducing CO
2
emissions here requires research driven efforts aimed at decarbonizing the chemistry of these processes.[240] In transport, scenarios envision sharp increases in the market share of electric vehicles, and low carbon fuel substitution for other transportation modes like shipping.[241]

Carbon sequestration

Most CO
2
emissions have been absorbed by carbon sinks, including plant growth, soil uptake, and ocean uptake (2020 Global Carbon Budget).

Natural carbon sinks can be enhanced to sequester significantly larger amounts of CO
2
beyond naturally occurring levels.[242]Reforestation and tree planting on non-forest lands are among the most mature sequestration techniques, although they raise food security concerns. Soil carbon sequestration and coastal carbon sequestration are less understood options.[243] The feasibility of land-based negative emissions methods for mitigation are uncertain in models; the IPCC has described mitigation strategies based on them as risky.

Where energy production or CO
2
-intensive heavy industries continue to produce waste CO
2
, the gas can be captured and stored instead of being released to the atmosphere. Although its current use is limited in scale and expensive,[245]carbon capture and storage (CCS) may be able to play a significant role in limiting CO
2
emissions by mid-century. This technique, in combination with bio-energy production (BECCS) can result in net-negative emissions, where the amount of greenhouse gasses that are released into the atmosphere are less than the sequestered, or stored, amount in the bio-energy fuel being grown.[247] It remains highly uncertain whether carbon dioxide removal techniques, such as BECCS, will be able to play a large role in limiting warming to 1.5 °C, and policy decisions based on reliance on carbon dioxide removal increases the risk of global warming increasing beyond international goals.[248]

Adaptation

Adaptation is « the process of adjustment to current or expected changes in climate and its effects ». Without additional mitigation, adaptation cannot avert the risk of « severe, widespread and irreversible » impacts. More severe climate change requires more transformative adaptation, which can be prohibitively expensive. The capacity and potential for humans to adapt, called adaptive capacity, is unevenly distributed across different regions and populations, and developing countries generally have less.[251] The first two decades of the 21st century saw an increase in adaptive capacity in most low- and middle-income countries with improved access to basic sanitation and electricity, but progress is slow. Many countries have implemented adaptation policies. However, there is a considerable gap between necessary and available finance.

Adaptation to sea level rise consists of avoiding at-risk areas, learning to live with increased flooding, protection and, if needed, the more transformative option of managed retreat.[253] There are economic barriers for moderation of dangerous heat impact: avoiding strenuous work or employing private air conditioning is not possible for everybody. In agriculture, adaptation options include a switch to more sustainable diets, diversification, erosion control and genetic improvements for increased tolerance to a changing climate. Insurance allows for risk-sharing, but is often difficult to obtain for people on lower incomes.[256] Education, migration and early warning systems can reduce climate vulnerability.

Ecosystems adapt to climate change, a process that can be supported by human intervention. Possible responses include increasing connectivity between ecosystems, allowing species to migrate to more favourable climate conditions and species relocation. Protection and restoration of natural and semi-natural areas helps build resilience, making it easier for ecosystems to adapt. Many of the actions that promote adaptation in ecosystems, also help humans adapt via ecosystem-based adaptation. For instance, restoration of natural fire regimes makes catastrophic fires less likely, and reduces human exposure. Giving rivers more space allows for more water storage in the natural system, reducing flood risk. Restored forest act as a carbon sink, but planting trees in unsuitable regions can exacerbate climate impacts.[258]

There are some synergies and trade-offs between adaptation and mitigation. Adaptation measures often offer short-term benefits, whereas mitigation has longer-term benefits.[259] Increased use of air conditioning allows people to better cope with heat, but increases energy demand. Compact urban development may lead to reduced emissions from transport and construction. Simultaneously, it may increase the urban heat island effect, leading to higher temperatures and increased exposure.[260] Increased food productivity has large benefits for both adaptation and mitigation.[261]

Policies and politics

The Climate Change Performance Index ranks countries by greenhouse gas emissions (40% of score), renewable energy (20%), energy use (20%), and climate policy (20%).

Haute

Medium

Faible

Very Low

Countries that are most vulnerable to climate change have typically been responsible for a small share of global emissions, which raises questions about justice and fairness.[262] Climate change is strongly linked to sustainable development. Limiting global warming makes it easier to achieve sustainable development goals, such as eradicating poverty and reducing inequalities. The connection between the two is recognised in the Sustainable Development Goal 13 which is to « Take urgent action to combat climate change and its impacts ».[263] The goals on food, clean water and ecosystem protections have synergies with climate mitigation.

The geopolitics of climate change is complex and has often been framed as a free-rider problem, in which all countries benefit from mitigation done by other countries, but individual countries would lose from investing in a transition to a low-carbon economy themselves. This framing has been challenged. For instance, the benefits in terms of public health and local environmental improvements of coal phase-out exceed the costs in almost all regions.[265] Another argument against this framing is that net importers of fossil fuels win economically from transitioning, causing net exporters to face stranded assets: fossil fuels they cannot sell.[266]

Policy options

A wide range of policies, regulations and laws are being used to reduce greenhouse gases. Carbon pricing mechanisms include carbon taxes and emissions trading systems.[267] As of 2019, carbon pricing covers about 20% of global greenhouse gas emissions.[268] Direct global fossil fuel subsidies reached $319 billion in 2017, and $5.2 trillion when indirect costs such as air pollution are priced in.[269] Ending these can cause a 28% reduction in global carbon emissions and a 46% reduction in air pollution deaths.[270] Subsidies could also be redirected to support the transition to clean energy.[271] More prescriptive methods that can reduce greenhouse gases include vehicle efficiency standards, renewable fuel standards, and air pollution regulations on heavy industry.[272]Renewable portfolio standards have been enacted in several countries requiring utilities to increase the percentage of electricity they generate from renewable sources.[273]

As the use of fossil fuels is reduced, there are Just Transition considerations involving the social and economic challenges that arise. An example is the employment of workers in the affected industries, along with the well-being of the broader communities involved.[274]Climate justice considerations, such as those facing indigenous populations in the Arctic,[275] are another important aspect of mitigation policies.[276]

International climate agreements

Since 2000, rising CO
2
emissions in China and the rest of world have surpassed the output of the United States and Europe.[277]

Per person, the United States generates CO
2
at a far faster rate than other primary regions.[277]

Nearly all countries in the world are parties to the 1994 United Nations Framework Convention on Climate Change (UNFCCC).[278] The objective of the UNFCCC is to prevent dangerous human interference with the climate system.[279] As stated in the convention, this requires that greenhouse gas concentrations are stabilised in the atmosphere at a level where ecosystems can adapt naturally to climate change, food production is not threatened, and economic development can be sustained.[280] Global emissions have risen since signing of the UNFCCC, which does not actually restrict emissions but rather provides a framework for protocols that do.[71]Its yearly conferences are the stage of global negotiations.[281]

The 1997 Kyoto Protocol extended the UNFCCC and included legally binding commitments for most developed countries to limit their emissions,[282] During Kyoto Protocol negotiations, the G77 (representing developing countries) pushed for a mandate requiring developed countries to « [take] the lead » in reducing their emissions,[283] since developed countries contributed most to the accumulation of greenhouse gases in the atmosphere, and since per-capita emissions were still relatively low in developing countries and emissions of developing countries would grow to meet their development needs.[284]

The 2009 Copenhagen Accord has been widely portrayed as disappointing because of its low goals, and was rejected by poorer nations including the G77.[285] Associated parties aimed to limit the increase in global mean temperature to below 2.0 °C (3.6 °F).[286] The Accord set the goal of sending $100 billion per year to developing countries in assistance for mitigation and adaptation by 2020, and proposed the founding of the Green Climate Fund.[287] As of 2020, the fund has failed to reach its expected target, and risks a shrinkage in its funding.[288]

In 2015 all UN countries negotiated the Paris Agreement, which aims to keep global warming well below 1.5 °C (2.7 °F) and contains an aspirational goal of keeping warming under 1.5 °C. The agreement replaced the Kyoto Protocol. Unlike Kyoto, no binding emission targets were set in the Paris Agreement. Instead, the procedure of regularly setting ever more ambitious goals and reevaluating these goals every five years has been made binding.[290] The Paris Agreement reiterated that developing countries must be financially supported.[291] As of February 2021, 194 states and the European Union have signed the treaty and 188 states and the EU have ratified or acceded to the agreement.[292]

The 1987 Montreal Protocol, an international agreement to stop emitting ozone-depleting gases, may have been more effective at curbing greenhouse gas emissions than the Kyoto Protocol specifically designed to do so.[293] The 2016 Kigali Amendment to the Montreal Protocol aims to reduce the emissions of hydrofluorocarbons, a group of powerful greenhouse gases which served as a replacement for banned ozone-depleting gases. This strengthened the makes the Montreal Protocol a stronger agreement against climate change.[294]

National responses

In 2019, the United Kingdom parliament became the first national government in the world to officially declare a climate emergency.[295] Other countries and jurisdictions followed suit.[296] In November 2019 the European Parliament declared a « climate and environmental emergency »,[297] and the European Commission presented its European Green Deal with the goal of making the EU carbon-neutral by 2050.[298] Major countries in Asia have made similar pledges: South Korea and Japan have committed to become carbon neutral by 2050, and China by 2060.[299]

As of 2021, based on information from 48 NDCs which represent
40% of the parties to the Paris Agreement, estimated total greenhouse gas emissions will be 0.5% lower compared to 2010 levels, below the 45% or 25% reduction goals to limit global warming to 1.5 °C or 2 °C, respectively.[300]

Scientific consensus and society

Scientific consensus

There is an overwhelming scientific consensus that global surface temperatures have increased in recent decades and that the trend is caused mainly by human-induced emissions of greenhouse gases, with 90–100% (depending on the exact question, timing and sampling methodology) of publishing climate scientists agreeing.[302] The consensus has grown to 100% among research scientists on anthropogenic global warming as of 2019.[303] No scientific body of national or international standing disagrees with this view.[304] Consensus has further developed that some form of action should be taken to protect people against the impacts of climate change, and national science academies have called on world leaders to cut global emissions.[305]

Scientific discussion takes place in journal articles that are peer-reviewed, which scientists subject to assessment every couple of years in the Intergovernmental Panel on Climate Change reports.[306] In 2013, the IPCC Fifth Assessment Report stated that « it is extremely likely that human influence has been the dominant cause of the observed warming since the mid-20th century ».[307] Their 2018 report expressed the scientific consensus as: « human influence on climate has been the dominant cause of observed warming since the mid-20th century ». Scientists have issued two warnings to humanity, in 2017 and 2019, expressing concern about the current trajectory of potentially catastrophic climate change, and about untold human suffering as a consequence.[309]

The public

Canadian residents protesting against global warming.

Climate change came to international public attention in the late 1980s.[310] Due to confusing media coverage in the early 1990s, understanding was often confounded by conflation with other environmental issues like ozone depletion.[311]In popular culture, the first movie to reach a mass public on the topic was The Day After Tomorrow in 2004, followed a few years later by the Al Gore documentary An Inconvenient Truth. Books, stories and films about climate change fall under the genre of climate fiction.[310]

Significant regional differences exist in both public concern for and public understanding of climate change. In 2015, a median of 54% of respondents considered it « a very serious problem », but Americans and Chinese (whose economies are responsible for the greatest annual CO2 emissions) were among the least concerned. A 2018 survey found increased concern globally on the issue compared to 2013 in most countries. More highly educated people, and in some countries, women and younger people were more likely to see climate change as a serious threat. In the United States, there was a large partisan gap in opinion.

Denial and misinformation

One deceptive approach is cherry picking data from short time periods to falsely assert that global average temperatures are not rising. Blue trendlines show short-term countertrends that mask longer-term warming trends (red trendlines). Blue dots show the so-called global warming hiatus.

Public debate about climate change has been strongly affected by climate change denial and misinformation, which originated in the United States and has since spread to other countries, particularly Canada and Australia. The actors behind climate change denial form a well-funded and relatively coordinated coalition of fossil fuel companies, industry groups, conservative think tanks, and contrarian scientists.[315]Like the tobacco industry before, the main strategy of these groups has been to manufacture doubt about scientific data and results.[316] Many who deny, dismiss, or hold unwarranted doubt about the scientific consensus on anthropogenic climate change are labelled as « climate change skeptics », which several scientists have noted is a misnomer.[317]

There are different variants of climate denial: some deny that warming takes place at all, some acknowledge warming but attribute it to natural influences, and some minimise the negative impacts of climate change.[318] Manufacturing uncertainty about the science later developed into a manufacturing controversy: creating the belief that there is significant uncertainty about climate change within the scientific community in order to delay policy changes.[319] Strategies to promote these ideas include criticism of scientific institutions,[320] and questioning the motives of individual scientists.[318] An echo chamber of climate-denying blogs and media has further fomented misunderstanding of climate change.[321]

Protest and litigation

Climate protests have risen in popularity in the 2010s in such forms as public demonstrations,[322]fossil fuel divestment, and lawsuits.[323] Prominent recent demonstrations include the school strike for climate, and civil disobedience. In the school strike, youth across the globe have protested by skipping school, inspired by Swedish teenager Greta Thunberg.[324] Mass civil disobedience actions by groups like Extinction Rebellion have protested by causing disruption.[325]Litigation is increasingly used as a tool to strengthen climate action, with many lawsuits targeting governments to demand that they take ambitious action or enforce existing laws regarding climate change.[326] Lawsuits against fossil-fuel companies, from activists, shareholders and investors, generally seek compensation for loss and damage.[327]

Discovery

Tyndall’s ratio spectrophotometer (drawing from 1861) measured how much infrared radiation was absorbed and emitted by various gases filling its central tube.

To explain why Earth’s temperature was higher than expected considering only incoming solar radiation, Joseph Fourier proposed the existence of a greenhouse effect. Solar energy reaches the surface as the atmosphere is transparent to solar radiation. The warmed surface emits infrared radiation, but the atmosphere is relatively opaque to infrared and slows the emission of energy, warming the planet.[328] Starting in 1859,[329] John Tyndall established that nitrogen and oxygen (99% of dry air) are transparent to infrared, but water vapour and traces of some gases (significantly methane and carbon dioxide) both absorb infrared and, when warmed, emit infrared radiation. Changing concentrations of these gases could have caused « all the mutations of climate which the researches of geologists reveal » including ice ages.[330]

Svante Arrhenius noted that water vapour in air continuously varied, but carbon dioxide (CO
2
) was determined by long term geological processes. At the end of an ice age, warming from increased CO
2
would increase the amount of water vapour, amplifying its effect in a feedback process. In 1896, he published the first climate model of its kind, showing that halving of CO
2
could have produced the drop in temperature initiating the ice age. Arrhenius calculated the temperature increase expected from doubling CO
2
to be around 5–6 °C (9.0–10.8 °F). Other scientists were initially sceptical and believed the greenhouse effect to be saturated so that adding more CO
2
would make no difference. They thought climate would be self-regulating.[332] From 1938 Guy Stewart Callendar published evidence that climate was warming and CO
2
levels increasing,[333] but his calculations met the same objections.[332]

In the 1950s, Gilbert Plass created a detailed computer model that included different atmospheric layers and the infrared spectrum and found that increasing CO
2
levels would cause warming. In the same decade Hans Suess found evidence CO
2
levels had been rising, Roger Revelle showed the oceans would not absorb the increase, and together they helped Charles Keeling to begin a record of continued increase, the Keeling Curve.[332] Scientists alerted the public,[334] and the dangers were highlighted at James Hansen’s 1988 Congressional testimony.[21] The Intergovernmental Panel on Climate Change, set up in 1988 to provide formal advice to the world’s governments, spurred interdisciplinary research.[335]

See also

Les références

Remarques

  1. ^ USGCRP Chapter 3 2017 Figure 3.1 panel 2, Figure 3.3 panel 5.
  2. ^ IPCC AR5 WG1 Summary for Policymakers 2013, p. 4: Warming of the climate system is unequivocal, and since the 1950s many of the observed changes are unprecedented over decades to millennia. The atmosphere and ocean have warmed, the amounts of snow and ice have diminished, sea level has risen, and the concentrations of greenhouse gases have increased; IPCC SR15 Ch1 2018, p. 54: Abundant empirical evidence of the unprecedented rate and global scale of impact of human influence on the Earth System (Steffen et al., 2016; Waters et al., 2016) has led many scientists to call for an acknowledgment that the Earth has entered a new geological epoch: the Anthropocene.
  3. ^ EPA 2020: Carbon dioxide (76%), Methane (16%), Nitrous Oxide (6%).
  4. ^ EPA 2020: Carbon dioxide enters the atmosphere through burning fossil fuels (coal, natural gas, and oil), solid waste, trees and other biological materials, and also as a result of certain chemical reactions (e.g., manufacture of cement). Fossil fuel use is the primary source of CO
    2
    . CO
    2
    can also be emitted from direct human-induced impacts on forestry and other land use, such as through deforestation, land clearing for agriculture, and degradation of soils. Methane is emitted during the production and transport of coal, natural gas, and oil. Methane emissions also result from livestock and other agricultural practices and by the decay of organic waste in municipal solid waste landfills.
  5. ^ « Scientific Consensus: Earth’s Climate is Warming ». Climate Change: Vital Signs of the Planet. NASA JPL. Archived from the original on 28 March 2020. Retrieved 29 March 2020.; Gleick, 7 January 2017.
  6. ^ IPCC SRCCL 2019, p. 7: Since the pre-industrial period, the land surface air temperature has risen nearly twice as much as the global average temperature (high confidence). Climate change… contributed to desertification and land degradation in many regions (high confidence).; IPCC SRCCL 2019, p. 45: Climate change is playing an increasing role in determining wildfire regimes alongside human activity (medium confidence), with future climate variability expected to enhance the risk and severity of wildfires in many biomes such as tropical rainforests (high confidence).
  7. ^ IPCC SROCC 2019, p. 16: Over the last decades, global warming has led to widespread shrinking of the cryosphere, with mass loss from ice sheets and glaciers (very high confidence), reductions in snow cover (high confidence) and Arctic sea ice extent and thickness (very high confidence), and increased permafrost temperature (very high confidence).
  8. ^ une b USGCRP Chapter 9 2017, p. 260.
  9. ^ EPA (19 January 2017). « Climate Impacts on Ecosystems ». Archived from the original on 27 January 2018. Retrieved 5 February 2019. Mountain and arctic ecosystems and species are particularly sensitive to climate change… As ocean temperatures warm and the acidity of the ocean increases, bleaching and coral die-offs are likely to become more frequent.
  10. ^ IPCC AR5 SYR 2014, pp. 13–16; WHO, Nov 2015: « Climate change is the greatest threat to global health in the 21st century. Health professionals have a duty of care to current and future generations. You are on the front line in protecting people from climate impacts – from more heat-waves and other extreme weather events; from outbreaks of infectious diseases such as malaria, dengue and cholera; from the effects of malnutrition; as well as treating people that are affected by cancer, respiratory, cardiovascular and other non-communicable diseases caused by environmental pollution. »
  11. ^ IPCC SR15 Ch1 2018, p. 64: Sustained net zero anthropogenic emissions of CO
    2
    and declining net anthropogenic non-CO
    2
    radiative forcing over a multi-decade period would halt anthropogenic global warming over that period, although it would not halt sea level rise or many other aspects of climate system adjustment.
  12. ^ Trenberth & Fasullo 2016
  13. ^ une b « The State of the Global Climate 2020 ». World Meteorological Organization. 14 January 2021. Retrieved 3 March 2021.
  14. ^ une b IPCC SR15 Summary for Policymakers 2018, p. 7
  15. ^ IPCC AR5 SYR 2014, p. 77, 3.2
  16. ^ une b c NASA, Mitigation and Adaptation 2020
  17. ^ IPCC AR5 SYR 2014, p. 17, SPM 3.2
  18. ^ Climate Action Tracker 2019, p. 1: Under current pledges, the world will warm by 2.8°C by the end of the century, close to twice the limit they agreed in Paris. Governments are even further from the Paris temperature limit in terms of their real-world action, which would see the temperature rise by 3°C.; United Nations Environment Programme 2019, p. 27.
  19. ^ IPCC SR15 Ch2 2018, pp. 95–96: In model pathways with no or limited overshoot of 1.5°C, global net anthropogenic CO
    2
    emissions decline by about 45% from 2010 levels by 2030 (40–60% interquartile range), reaching net zero around 2050 (2045–2055 interquartile range); IPCC SR15 2018, p. 17, SPM C.3:All pathways that limit global warming to 1.5°C with limited or no overshoot project the use of carbon dioxide removal (CDR) on the order of 100–1000 GtCO2 over the 21st century. CDR would be used to compensate for residual emissions and, in most cases, achieve net negative emissions to return global warming to 1.5°C following a peak (high confidence). CDR deployment of several hundreds of GtCO2 is subject to multiple feasibility and sustainability constraints (high confidence).; Rogelj et al. 2015; Hilaire et al. 2019
  20. ^ NASA, 5 December 2008.
  21. ^ une b Weart « The Public and Climate Change: The Summer of 1988 », « News reporters gave only a little attention … ».
  22. ^ Joo et al. 2015.
  23. ^ NOAA, 17 June 2015: « when scientists or public leaders talk about global warming these days, they almost always mean human-caused warming »; IPCC AR5 SYR Glossary 2014, p. 120: « Climate change refers to a change in the state of the climate that can be identified (e.g., by using statistical tests) by changes in the mean and/or the variability of its properties and that persists for an extended period, typically decades or longer. Climate change may be due to natural internal processes or external forcings such as modulations of the solar cycles, volcanic eruptions and persistent anthropogenic changes in the composition of the atmosphere or in land use. »
  24. ^ NASA, 7 July 2020; Shaftel 2016: « ‘Climate change’ and ‘global warming’ are often used interchangeably but have distinct meanings. … Global warming refers to the upward temperature trend across the entire Earth since the early 20th century … Climate change refers to a broad range of global phenomena …[which] include the increased temperature trends described by global warming. »; Associated Press, 22 September 2015: « The terms global warming and climate change can be used interchangeably. Climate change is more accurate scientifically to describe the various effects of greenhouse gases on the world because it includes extreme weather, storms and changes in rainfall patterns, ocean acidification and sea level. ».
  25. ^ Hodder & Martin 2009; BBC Science Focus Magazine, 3 February 2020.
  26. ^ The Guardian, 17 May 2019; BBC Science Focus Magazine, 3 February 2020.
  27. ^ USA Today, 21 November 2019.
  28. ^ Neukom et al. 2019.
  29. ^ une b « Global Annual Mean Surface Air Temperature Change ». NASA. Retrieved 23 February 2020.
  30. ^ EPA 2016: The U.S. Global Change Research Program, the National Academy of Sciences, and the Intergovernmental Panel on Climate Change (IPCC) have each independently concluded that warming of the climate system in recent decades is « unequivocal ». This conclusion is not drawn from any one source of data but is based on multiple lines of evidence, including three worldwide temperature datasets showing nearly identical warming trends as well as numerous other independent indicators of global warming (e.g. rising sea levels, shrinking Arctic sea ice).
  31. ^ IPCC SR15 Summary for Policymakers 2018, p. 4; WMO 2019, p. 6.
  32. ^ IPCC SR15 Ch1 2018, p. 81.
  33. ^ IPCC AR5 WG1 Ch2 2013, p. 162.
  34. ^ IPCC SR15 Ch1 2018, p. 57: This report adopts the 51-year reference period, 1850–1900 inclusive, assessed as an approximation of pre-industrial levels in AR5 … Temperatures rose by 0.0 °C–0.2 °C from 1720–1800 to 1850–1900; Hawkins et al. 2017, p. 1844.
  35. ^ IPCC AR5 WG1 Summary for Policymakers 2013, pp. 4–5: « Global-scale observations from the instrumental era began in the mid-19th century for temperature and other variables … the period 1880 to 2012 … multiple independently produced datasets exist. »
  36. ^ IPCC AR5 WG1 Ch5 2013, p. 386; Neukom et al. 2019.
  37. ^ IPCC AR5 WG1 Ch5 2013, pp. 389, 399–400: « The PETM [around 55.5–55.3 million years ago] was marked by … global warming of 4 °C to 7 °C … Deglacial global warming occurred in two main steps from 17.5 to 14.5 ka [thousand years ago] and 13.0 to 10.0 ka. »
  38. ^ IPCC SR15 Ch1 2018, p. 54.
  39. ^ Kennedy et al. 2010, p. S26. Figure 2.5.
  40. ^ Kennedy et al. 2010, pp. S26, S59–S60; USGCRP Chapter 1 2017, p. 35.
  41. ^ IPCC AR4 WG2 Ch1 2007, Sec. 1.3.5.1, p. 99.
  42. ^ « Global Warming ». NASA JPL. Retrieved 11 September 2020. Satellite measurements show warming in the troposphere but cooling in the stratosphere. This vertical pattern is consistent with global warming due to increasing greenhouse gases but inconsistent with warming from natural causes.
  43. ^ IPCC SRCCL Summary for Policymakers 2019, p. 7.
  44. ^ Sutton, Dong & Gregory 2007.
  45. ^ « Climate Change: Ocean Heat Content ». NOAA. 2018. Archived from the original on 12 February 2019. Retrieved 20 February 2019.
  46. ^ IPCC AR5 WG1 Ch3 2013, p. 257: « Ocean warming dominates the global energy change inventory. Warming of the ocean accounts for about 93% of the increase in the Earth’s energy inventory between 1971 and 2010 (high confidence), with warming of the upper (0 to 700 m) ocean accounting for about 64% of the total.
  47. ^ NOAA, 10 July 2011.
  48. ^ United States Environmental Protection Agency 2016, p. 5: « Black carbon that is deposited on snow and ice darkens those surfaces and decreases their reflectivity (albedo). This is known as the snow/ice albedo effect. This effect results in the increased absorption of radiation that accelerates melting. »
  49. ^ IPCC AR5 WG1 Ch12 2013, p. 1062; IPCC SROCC Ch3 2019, p. 212.
  50. ^ NASA, 12 September 2018.
  51. ^ Delworth & Zeng 2012, p. 5; Franzke et al. 2020.
  52. ^ National Research Council 2012, p. 9.
  53. ^ IPCC AR5 WG1 Ch10 2013, p. 916.
  54. ^ Knutson 2017, p. 443; IPCC AR5 WG1 Ch10 2013, pp. 875–876.
  55. ^ une b USGCRP 2009, p. 20.
  56. ^ IPCC AR5 WG1 Summary for Policymakers 2013, pp. 13–14.
  57. ^ NASA. « The Causes of Climate Change ». Climate Change: Vital Signs of the Planet. Archived from the original on 8 May 2019. Retrieved 8 May 2019.
  58. ^ IPCC AR4 WG1 Ch1 2007, FAQ1.1: « To emit 240 W m−2, a surface would have to have a temperature of around −19 °C (−2 °F). This is much colder than the conditions that actually exist at the Earth’s surface (the global mean surface temperature is about 14 °C).
  59. ^ ACS. « What Is the Greenhouse Effect? ». Archived from the original on 26 May 2019. Retrieved 26 May 2019.
  60. ^ Ozone acts as a greenhouse gas in the lowest layer of the atmosphere, the troposphere (as opposed to the stratospheric ozone layer).Wang, Shugart & Lerdau 2017
  61. ^ Schmidt et al. 2010; USGCRP Climate Science Supplement 2014, p. 742.
  62. ^ The Guardian, 19 February 2020.
  63. ^ WMO 2020, p. 5.
  64. ^ Siegenthaler et al. 2005; Lüthi et al. 2008.
  65. ^ BBC, 10 May 2013.
  66. ^ Our World in Data, 18 September 2020.
  67. ^ Olivier & Peters 2019, p. 17; Our World in Data, 18 September 2020; EPA 2020: Greenhouse gas emissions from industry primarily come from burning fossil fuels for energy, as well as greenhouse gas emissions from certain chemical reactions necessary to produce goods from raw materials; « Redox, extraction of iron and transition metals ». Hot air (oxygen) reacts with the coke (carbon) to produce carbon dioxide and heat energy to heat up the furnace. Removing impurities: The calcium carbonate in the limestone thermally decomposes to form calcium oxide. calcium carbonate → calcium oxide + carbon dioxide; Kvande 2014: Carbon dioxide gas is formed at the anode, as the carbon anode is consumed upon reaction of carbon with the oxygen ions from the alumina (Al2O3). Formation of carbon dioxide is unavoidable as long as carbon anodes are used, and it is of great concern because CO2 is a greenhouse gas
  68. ^ EPA 2020; Global Methane Initiative 2020: Estimated Global Anthropogenic Methane Emissions by Source, 2020: Enteric fermentation (27%), Manure Management (3%), Coal Mining (9%), Municipal Solid Waste (11%), Oil & Gas (24%), Wastewater (7%), Rice Cultivation (7%).
  69. ^ Michigan State University 2014: Nitrous oxide is produced by microbes in almost all soils. In agriculture, N2O is emitted mainly from fertilized soils and animal wastes – wherever nitrogen (N) is readily available.; EPA 2019: Agricultural activities, such as fertilizer use, are the primary source of N2O emissions; Davidson 2009: 2.0% of manure nitrogen and 2.5% of fertilizer nitrogen was converted to nitrous oxide between 1860 and 2005; these percentage contributions explain the entire pattern of increasing nitrous oxide concentrations over this period.
  70. ^ une b EPA 2019.
  71. ^ IPCC SRCCL Summary for Policymakers 2019, p. dix.
  72. ^ IPCC SROCC Ch5 2019, p. 450.
  73. ^ Haywood 2016, p. 456; McNeill 2017; Samset et al. 2018.
  74. ^ IPCC AR5 WG1 Ch2 2013, p. 183.
  75. ^ He et al. 2018; Storelvmo et al. 2016.
  76. ^ Ramanathan & Carmichael 2008.
  77. ^ Wild et al. 2005; Storelvmo et al. 2016; Samset et al. 2018.
  78. ^ Twomey 1977.
  79. ^ Albrecht 1989.
  80. ^ USGCRP Chapter 2 2017, p. 78.
  81. ^ Ramanathan & Carmichael 2008; RIVM 2016.
  82. ^ Sand et al. 2015.
  83. ^ World Resources Institute, 31 March 2021
  84. ^ Ritchie & Roser 2018
  85. ^ The Sustainability Consortium, 13 September 2018; UN FAO 2016, p. 18.
  86. ^ Curtis et al. 2018.
  87. ^ une b World Resources Institute, 8 December 2019.
  88. ^ IPCC SRCCL Ch2 2019, p. 172: « The global biophysical cooling alone has been estimated by a larger range of climate models and is −0.10 ± 0.14°C; it ranges from −0.57°C to +0.06°C … This cooling is essentially dominated by increases in surface albedo: historical land cover changes have generally led to a dominant brightening of land ».
  89. ^ Schmidt, Shindell & Tsigaridis 2014; Fyfe et al. 2016.
  90. ^ une b USGCRP Chapter 2 2017, p. 78.
  91. ^ National Research Council 2008, p. 6.
  92. ^ « Is the Sun causing global warming? ». Climate Change: Vital Signs of the Planet. Archived from the original on 5 May 2019. Retrieved 10 May 2019.
  93. ^ IPCC AR4 WG1 Ch9 2007, pp. 702–703; Randel et al. 2009.
  94. ^ USGCRP Chapter 2 2017, p. 79
  95. ^ « Thermodynamics: Albedo ». NSIDC. Archived from the original on 11 October 2017. Retrieved 10 October 2017.
  96. ^ « The study of Earth as an integrated system ». Vitals Signs of the Planet. Earth Science Communications Team at NASA’s Jet Propulsion Laboratory / California Institute of Technology. 2013. Archived from the original on 26 February 2019..
  97. ^ CITEREFIPCC_AR5_WG12013
  98. ^ Wolff et al. 2015: « the nature and magnitude of these feedbacks are the principal cause of uncertainty in the response of Earth’s climate (over multi-decadal and longer periods) to a particular emissions scenario or greenhouse gas concentration pathway. »
  99. ^ USGCRP Chapter 2 2017, p. 90.
  100. ^ NASA, 28 May 2013.
  101. ^ Cohen et al. 2014.
  102. ^ une b Turetsky et al. 2019.
  103. ^ NASA, 16 June 2011: « So far, land plants and the ocean have taken up about 55 percent of the extra carbon people have put into the atmosphere while about 45 percent has stayed in the atmosphere. Eventually, the land and oceans will take up most of the extra carbon dioxide, but as much as 20 percent may remain in the atmosphere for many thousands of years. »
  104. ^ IPCC SRCCL Ch2 2019, pp. 133, 144.
  105. ^ Melillo et al. 2017: Our first-order estimate of a warming-induced loss of 190 Pg of soil carbon over the 21st century is equivalent to the past two decades of carbon emissions from fossil fuel burning.
  106. ^ Wolff et al. 2015
  107. ^ Carbon Brief, 15 January 2018, « Who does climate modelling around the world? ».
  108. ^ IPCC AR5 SYR Glossary 2014, p. 120.
  109. ^ Carbon Brief, 15 January 2018, « What are the different types of climate models? ».
  110. ^ Carbon Brief, 15 January 2018, « What is a climate model? ».
  111. ^ Stott & Kettleborough 2002.
  112. ^ IPCC AR4 WG1 Ch8 2007, FAQ 8.1.
  113. ^ Stroeve et al. 2007; National Geographic, 13 August 2019.
  114. ^ Liepert & Previdi 2009.
  115. ^ Rahmstorf et al. 2007;
    Mitchum et al. 2018.
  116. ^ USGCRP Chapter 15 2017.
  117. ^ IPCC AR5 SYR Summary for Policymakers 2014, Sec. 2.1.
  118. ^ IPCC AR5 WG1 Technical Summary 2013, pp. 79–80.
  119. ^ IPCC AR5 WG1 Technical Summary 2013, p. 57.
  120. ^ Carbon Brief, 15 January 2018, « What are the inputs and outputs for a climate model? ».
  121. ^ Riahi et al. 2017; Carbon Brief, 19 April 2018.
  122. ^ IPCC AR5 WG3 Ch5 2014, pp. 379–380.
  123. ^ Matthews et al. 2009.
  124. ^ Carbon Brief, 19 April 2018; Meinshausen 2019, p. 462.
  125. ^ Rogelj et al. 2019.
  126. ^ IPCC SR15 Summary for Policymakers 2018, p. 12.
  127. ^ NOAA 2017.
  128. ^ Hansen et al. 2016; Smithsonian, 26 June 2016.
  129. ^ USGCRP Chapter 15 2017, p. 415.
  130. ^ Scientific American, 29 April 2014; Burke & Stott 2017.
  131. ^ WCRP Global Sea Level Budget Group 2018.
  132. ^ IPCC SROCC Ch4 2019, p. 324: GMSL (global mean sea level, red) will rise between 0.43 m (0.29–0.59 m, likely range) (RCP2.6) and 0.84 m (0.61–1.10 m, likely range) (RCP8.5) by 2100 (medium confidence) relative to 1986–2005.
  133. ^ DeConto & Pollard 2016.
  134. ^ Zhang et al. 2008.
  135. ^ IPCC SROCC Summary for Policymakers 2019, p. 18.
  136. ^ Doney et al. 2009.
  137. ^ Deutsch et al. 2011
  138. ^ IPCC SROCC Ch5 2019, p. 510; « Climate Change and Harmful Algal Blooms ». EPA. Retrieved 11 September 2020.
  139. ^ IPCC SR15 Ch3 2018, p. 283.
  140. ^ « Tipping points in Antarctic and Greenland ice sheets ». NESSC. 12 November 2018. Retrieved 25 February 2019.
  141. ^ Clark et al. 2008.
  142. ^ Liu et al. 2017.
  143. ^ une b National Research Council 2011, p. 14; IPCC AR5 WG1 Ch12 2013, pp. 88–89, FAQ 12.3.
  144. ^ Crucifix 2016
  145. ^ Smith et al. 2009; Levermann et al. 2013.
  146. ^ IPCC SR15 Ch3 2018, p. 218.
  147. ^ IPCC SRCCL Summary for Policymakers 2019, p. 7; Zeng & Yoon 2009.
  148. ^ Poloczanska et al. 2013; Lenoir et al. 2020.
  149. ^ Smale et al. 2019.
  150. ^ IPCC SROCC Ch5 2019, p. 510
  151. ^ « Coral Reef Risk Outlook ». National Oceanic and Atmospheric Administration. Retrieved 4 April 2020. At present, local human activities, coupled with past thermal stress, threaten an estimated 75 percent of the world’s reefs. By 2030, estimates predict more than 90% of the world’s reefs will be threatened by local human activities, warming, and acidification, with nearly 60% facing high, very high, or critical threat levels.
  152. ^ Carbon Brief, 7 January 2020.
  153. ^ IPCC AR5 WG2 Ch28 2014, p. 1596: « Within 50 to 70 years, loss of hunting habitats may lead to elimination of polar bears from seasonally ice-covered areas, where two-thirds of their world population currently live. »
  154. ^ « What a changing climate means for Rocky Mountain National Park ». National Park Service. Retrieved 9 April 2020.
  155. ^ IPCC AR5 WG2 Ch18 2014, pp. 983, 1008.
  156. ^ IPCC AR5 WG2 Ch19 2014, p. 1077.
  157. ^ IPCC AR5 SYR Summary for Policymakers 2014, p. 8, SPM 2
  158. ^ IPCC AR5 SYR Summary for Policymakers 2014, p. 13, SPM 2.3
  159. ^ IPCC AR5 WG2 Ch11 2014, pp. 720–723.
  160. ^ Costello et al. 2009; Watts et al. 2015; IPCC AR5 WG2 Ch11 2014, p. 713
  161. ^ WHO 2014
  162. ^ Springmann et al. 2016, p. 2; Haines & Ebi 2019
  163. ^ Haines & Ebi 2019, Figure 3; IPCC AR5 SYR 2014, p. 15, SPM 2.3
  164. ^ WHO, Nov 2015
  165. ^ IPCC SRCCL Ch5 2019, p. 451.
  166. ^ Zhao et al. 2017; IPCC SRCCL Ch5 2019, p. 439
  167. ^ IPCC AR5 WG2 Ch7 2014, p. 488
  168. ^ IPCC SRCCL Ch5 2019, p. 462
  169. ^ Holding et al. 2016; IPCC AR5 WG2 Ch3 2014, pp. 232–233.
  170. ^ DeFries et al. 2019, p. 3; Krogstrup & Oman 2019, p. dix.
  171. ^ Diffenbaugh & Burke 2019; The Guardian, 26 January 2015; Burke, Davis & Diffenbaugh 2018.
  172. ^ IPCC AR5 WG2 Ch13 2014, pp. 796–797.
  173. ^ IPCC AR5 WG2 Ch13 2014, p. 796.
  174. ^ UNHCR 2011, p. 3.
  175. ^ Balsari, Dresser & Leaning 2020
  176. ^ Cattaneo et al. 2019; UN Environment, 25 October 2018.
  177. ^ Flavell 2014, p. 38; Kaczan & Orgill-Meyer 2020
  178. ^ Serdeczny et al. 2016.
  179. ^ IPCC SRCCL Ch5 2019, pp. 439, 464.
  180. ^ National Oceanic and Atmospheric Administration. « What is nuisance flooding? ». Retrieved 8 April 2020.
  181. ^ Kabir et al. 2016.
  182. ^ Van Oldenborgh et al. 2019.
  183. ^ IPCC AR5 SYR Glossary 2014, p. 125.
  184. ^ IPCC SR15 Summary for Policymakers 2018, p. 12.
  185. ^ IPCC SR15 Summary for Policymakers 2018, p. 15.
  186. ^ IPCC SR15 2018, p. 17, C.3
  187. ^ United Nations Environment Programme 2019, p. XX.
  188. ^ IPCC SR15 Ch2 2018, p. 109.
  189. ^ une b Teske, ed. 2019, p. xxiii.
  190. ^ World Resources Institute, 8 August 2019.
  191. ^ Bui et al. 2018, p. 1068; IPCC SR15 Summary for Policymakers 2018, p. 17.
  192. ^ IPCC SR15 2018, p. 34; IPCC SR15 Summary for Policymakers 2018, p. 17
  193. ^ IPCC SR15 Ch4 2018, pp. 347–352
  194. ^ Friedlingstein et al. 2019.
  195. ^ une b United Nations Environment Programme 2019, p. 46.; Vox, 20 September 2019.; « The Role of Firm Low-Carbon Electricity Resources in Deep Decarbonization of Power Generation ».
  196. ^ Teske et al. 2019, p. 163, Table 7.1.
  197. ^ REN21 2020, p. 32, Fig.1.
  198. ^ IEA 2020a, p. 12; Ritchie 2019
  199. ^ The Guardian, 6 April 2020.
  200. ^ Dunai, Marton; De Clercq, Geert (23 September 2019). « Nuclear energy too slow, too expensive to save climate: report ». Reuters. The cost of generating solar power ranges from $36 to $44 per megawatt hour (MWh), the WNISR said, while onshore wind power comes in at $29–56 per MWh. Nuclear energy costs between $112 and $189. Over the past decade, (costs) for utility-scale solar have dropped by 88% and for wind by 69%. For nuclear, they have increased by 23%.
  201. ^ United Nations Environment Programme 2019, p. XXIII, Table ES.3; Teske, ed. 2019, p. xxvii, Fig.5.
  202. ^ IPCC SR15 Ch2 2018, p. 131, Figure 2.15; Teske 2019, pp. 409–410.
  203. ^ Berrill et al. 2016.
  204. ^ IPCC SR15 Ch4 2018, pp. 324–325.
  205. ^ « Hydropower ». iea.org. International Energy Agency. Retrieved 12 October 2020. Hydropower generation is estimated to have increased by over 2% in 2019 owing to continued recovery from drought in Latin America as well as strong capacity expansion and good water availability in China (…) capacity expansion has been losing speed. This downward trend is expected to continue, due mainly to less large-project development in China and Brazil, where concerns over social and environmental impacts have restricted projects.
  206. ^ Watts et al. 2019, pp. 1854; WHO 2018, p. 27
  207. ^ Watts et al. 2019, pp. 1837; WHO 2016
  208. ^ WHO 2018, p. 27; Vandyck et al. 2018; IPCC SR15 2018, p. 97: « Limiting warming to 1.5°C can be achieved synergistically with poverty alleviation and improved energy security and can provide large public health benefits through improved air quality, preventing millions of premature deaths. However, specific mitigation measures, such as bioenergy, may result in trade-offs that require consideration. »
  209. ^ IPCC SR15 Ch2 2018, p. 97
  210. ^ IPCC AR5 SYR Summary for Policymakers 2014, p. 29; IEA 2020b
  211. ^ IPCC SR15 Ch2 2018, p. 155, Fig. 2.27
  212. ^ IEA 2020b
  213. ^ IPCC SR15 Ch2 2018, p. 142
  214. ^ IPCC SR15 Ch2 2018, pp. 138–140
  215. ^ IPCC SR15 Ch2 2018, pp. 141–142
  216. ^ IPCC AR5 WG3 Ch9 2014, pp. 686–694.
  217. ^ World Resources Institute, December 2019, p. 1.
  218. ^ World Resources Institute, December 2019, p. dix.
  219. ^ « Low and zero emissions in the steel and cement industries » (PDF). pp. 11, 19–22.
  220. ^ IPCC SR15 Ch2 2018, pp. 142–144; United Nations Environment Programme 2019, Table ES.3 & p.49.
  221. ^ World Resources Institute, 8 August 2019: IPCC SRCCL Ch2 2019, pp. 189–193.
  222. ^ Ruseva et al. 2020.
  223. ^ IPCC SR15 Ch4 2018, pp. 326–327; Bednar, Obersteiner & Wagner 2019; European Commission, 28 November 2018, p. 188.
  224. ^ IPCC AR5 SYR 2014, p. 125; Bednar, Obersteiner & Wagner 2019.
  225. ^ IPCC SR15 2018, p. 34
  226. ^ IPCC AR4 WG2 Ch19 2007, p. 796.
  227. ^ Stephens, Scott A; Bell, Robert G; Lawrence, Judy (2018). « Developing signals to trigger adaptation to sea-level rise ». Environmental Research Letters. 13 (10): 104004. Bibcode:2018ERL….13j4004S. doi:10.1088/1748-9326/aadf96. ISSN 1748-9326.
  228. ^ Surminski, Swenja; Bouwer, Laurens M.; Linnerooth-Bayer, Joanne (2016). « How insurance can support climate resilience ». Nature Climate Change. 6 (4): 333–334. Bibcode:2016NatCC…6..333S. doi:10.1038/nclimate2979. ISSN 1758-6798.
  229. ^ Morecroft, Michael D.; Duffield, Simon; Harley, Mike; Pearce-Higgins, James W.; et al. (2019). « Measuring the success of climate change adaptation and mitigation in terrestrial ecosystems ». La science. 366 (6471): eaaw9256. doi:10.1126/science.aaw9256. ISSN 0036-8075. PMID 31831643. S2CID 209339286.
  230. ^ Berry, Pam M.; Brown, Sally; Chen, Minpeng; Kontogianni, Areti; et al. (2015). « Cross-sectoral interactions of adaptation and mitigation measures ». Climatic Change. 128 (3): 381–393. Bibcode:2015ClCh..128..381B. doi:10.1007/s10584-014-1214-0. ISSN 1573-1480. S2CID 153904466.
  231. ^ Sharifi, Ayyoob (2020). « Trade-offs and conflicts between urban climate change mitigation and adaptation measures: A literature review ». Journal of Cleaner Production. 276: 122813. doi:10.1016/j.jclepro.2020.122813. ISSN 0959-6526.
  232. ^ IPCC AR5 SYR 2014, p. 54.
  233. ^ IPCC AR5 SYR Summary for Policymakers 2014, p. 17, Section 3.
  234. ^ IPCC SR15 Ch5 2018, p. 447; United Nations (2017) Resolution adopted by the General Assembly on 6 July 2017, Work of the Statistical Commission pertaining to the 2030 Agenda for Sustainable Development (A/RES/71/313)
  235. ^ Rauner et al. 2020.
  236. ^ Mercure et al. 2018.
  237. ^ Union of Concerned Scientists, 8 January 2017; Hagmann, Ho & Loewenstein 2019.
  238. ^ World Bank, June 2019, p. 12, Box 1.
  239. ^ Watts et al. 2019, p. 1866
  240. ^ UN Human Development Report 2020, p. dix
  241. ^ International Institute for Sustainable Development 2019, p. iv.
  242. ^ ICCT 2019, p. iv; Natural Resources Defense Council, 29 September 2017.
  243. ^ National Conference of State Legislators, 17 April 2020; European Parliament, February 2020.
  244. ^ Carbon Brief, 4 Jan 2017.
  245. ^ Pacific Environment, 3 October 2018; Ristroph 2019.
  246. ^ UNCTAD 2009.
  247. ^ une b Friedlingstein et al. 2019, Table 7.
  248. ^ UNFCCC, « What is the United Nations Framework Convention on Climate Change? »
  249. ^ UNFCCC 1992, Article 2.
  250. ^ IPCC AR4 WG3 Ch1 2007, p. 97.
  251. ^ UNFCCC, « What are United Nations Climate Change Conferences? ».
  252. ^ Kyoto Protocol 1997; Liverman 2009, p. 290.
  253. ^ Dessai 2001, p. 4; Grubb 2003.
  254. ^ Liverman 2009, p. 290.
  255. ^ Müller 2010; The New York Times, 25 May 2015; UNFCCC: Copenhagen 2009; EUobserver, 20 December 2009.
  256. ^ UNFCCC: Copenhagen 2009.
  257. ^ Conference of the Parties to the Framework Convention on Climate Change. Copenhagen. 7–18 December 2009. un document= FCCC/CP/2009/L.7. Archived from the original on 18 October 2010. Retrieved 24 October 2010.
  258. ^ Cui, Lianbiao; Sun, Yi; Song, Malin; Zhu, Lei (2020). « Co-financing in the green climate fund: lessons from the global environment facility ». Climate Policy. 20 (1): 95–108. doi:10.1080/14693062.2019.1690968. ISSN 1469-3062. S2CID 213694904.
  259. ^ Climate Focus 2015, p. 3; Carbon Brief, 8 October 2018.
  260. ^ Climate Focus 2015, p. 5.
  261. ^ « Status of Treaties, United Nations Framework Convention on Climate Change ». United Nations Treaty Collection. Retrieved 20 November 2019.; Salon, 25 September 2019.
  262. ^ Goyal et al. 2019.
  263. ^ Yeo, Sophie (10 October 2016). « Explainer: Why a UN climate deal on HFCs matters ». Carbon Brief. Retrieved 10 January 2021.
  264. ^ BBC, 1 May 2019; Vice, 2 May 2019.
  265. ^ The Verge, 27 December 2019.
  266. ^ The Guardian, 28 November 2019
  267. ^ Politico, 11 December 2019.
  268. ^ The Guardian, 28 October 2020
  269. ^ UN NDC Synthesis Report 2021, pp. 4–5; UNFCCC Press Office (26 February 2021). « Greater Climate Ambition Urged as Initial NDC Synthesis Report Is Published ». Retrieved 21 April 2021.
  270. ^ Cook et al. 2016
  271. ^ Cook et al. 2016; NASA, Scientific Consensus 2020
  272. ^ Powell, James (20 November 2019). « Scientists Reach 100% Consensus on Anthropogenic Global Warming ». Bulletin of Science, Technology & Society. 37 (4): 183–184. doi:10.1177/0270467619886266. S2CID 213454806. Retrieved 15 November 2020.
  273. ^ NRC 2008, p. 2; Oreskes 2007, p. 68; Gleick, 7 January 2017
  274. ^ Joint statement of the G8+5 Academies (2009); Gleick, 7 January 2017.
  275. ^ Royal Society 2005.
  276. ^ IPCC AR5 WG1 Summary for Policymakers 2013, p. 17, D.3.
  277. ^ Ripple et al. 2017; Ripple et al. 2019; Fletcher 2019, p. 9
  278. ^ une b Weart « The Public and Climate Change (since 1980) ».
  279. ^ Newell 2006, p. 80; Yale Climate Connections, 2 November 2010.
  280. ^ Dunlap & McCright 2011, pp. 144, 155; Björnberg et al. 2017.
  281. ^ Oreskes & Conway 2010; Björnberg et al. 2017.
  282. ^ O’Neill & Boykoff 2010; Björnberg et al. 2017.
  283. ^ une b Björnberg et al. 2017.
  284. ^ Dunlap & McCright 2015, p. 308.
  285. ^ Dunlap & McCright 2011, p. 146.
  286. ^ Harvey et al. 2018.
  287. ^ The New York Times, 29 April 2017.
  288. ^ Gunningham 2018.
  289. ^ The Guardian, 19 March 2019; Boulianne, Lalancette & Ilkiw 2020.
  290. ^ Deutsche Welle, 22 June 2019.
  291. ^ Connolly, Kate (29 April 2021). « Historic’ German ruling says climate goals not tough enough ». Le gardien. Retrieved 1 May 2021.
  292. ^ Setzer & Byrnes 2019.
  293. ^ Archer & Pierrehumbert 2013, pp. 10–14.
  294. ^ Tyndall 1861.
  295. ^ Archer & Pierrehumbert 2013, pp. 39–42; Fleming 2008, Tyndall. In 1856 Eunice Newton Foote experimented using glass cylinders filled with different gases heated by sunlight, but her apparatus could not distinguish the infrared greenhouse effect. She found moist air warmed more than dry air, and CO
    2
    warmed most, so she concluded higher levels of this in the past would have increased temperatures: Huddleston 2019.
  296. ^ une b c Weart « The Carbon Dioxide Greenhouse Effect »; Fleming 2008, Arrhenius.
  297. ^ Callendar 1938; Fleming 2007.
  298. ^ Weart « Suspicions of a Human-Caused Greenhouse (1956–1969) ».
  299. ^ Weart 2013, p. 3567.

Sources

IPCC reports

AR4 Working Group I Report

AR4 Working Group II Report

AR4 Working Group III Report

AR5 Working Group I Report

AR5 Working Group II Report

AR5 Working Group III Report

  • IPCC (2014). Edenhofer, O.; Pichs-Madruga, R.; Sokona, Y.; Farahani, E.; et al. (eds.). Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK & New York, NY: Cambridge University Press. ISBN 978-1-107-05821-7.

AR5 Synthesis Report

Special Report: Global Warming of 1.5 °C

Special Report: Climate change and Land

Special Report: The Ocean and Cryosphere in a Changing Climate

Other peer-reviewed sources

Books, reports and legal documents

Non-technical sources

External links

260 ms 8.7%
Scribunto_LuaSandboxCallback::callParserFunction 260 ms 8.7%
Scribunto_LuaSandboxCallback::anchorEncode 240 ms 8.1%
Scribunto_LuaSandboxCallback::match 220 ms 7.4%
Scribunto_LuaSandboxCallback::find 180 ms 6.0%
Scribunto_LuaSandboxCallback::getAllExpandedArguments 80 ms 2.7%
dataWrapper 80 ms 2.7%
select_one 60 ms 2.0%
[others] 860 ms 28.9%
Number of Wikibase entities loaded: 1/400
->


Source de l’article

A découvrir